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The goal of this paper is to identify the parameter set of a given machine. The identification method is based on data assimilation
coupled with a FEM model. Data assimilation method is an optimization approach that limits the space of candidate parameter sets
by centering it to the ideal machine. An application to an electrical machine is presented based on the analysis of flux probe signals.
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I. INTRODUCTION

NUMERICAL model based on Finite Element Method
is widely used to study electrical machines. It requires

the knowledge of different input parameters whose values are
not always very well known. Furthermore, the construction
of a machine can induce some imperfections. This typically
leads to slight differences between the values obtained from
the simulation of the ideal machine and the measurements
achieved on the real machine. These differences are generally
not significant in the case of global variables (emfs, currents
..). But, in the case of the investigation of local variables,
particularly for the detection of small defects, it is important
to base the healthy state of the real machine and not of that of
the modelled ideal machine. It is then necessary to reach the
model parameters related the healthy state of the real machine.

To do that, we use, in this paper, an approach based on data
assimilation coupled with Finite Element Analysis (see section
II). To highlight its interest, we apply it, through the use of
twin experiments; to identify slight eccentricities of a healthy
synchronous generator (see section III).

II. DATA ASSIMILATION METHODOLOGY

The data assimilation methodology [1] was first introduced
in the field of meteorological study, to recover physical fields
to improve weather forecasts.

The principle of this methodology consists in recovering
as well as possible the “true parameter set” xt of a con-
sidered system, by gathering all the information available on
this system. The parameter identification minimizes an error
function corresponding to the sum of two terms : the difference
between the simulated data and measurements (as for classical
parameter identification methods) and the distance between
tested the parameter set and the parameter set of the ideal
machine. This last distance tends to limit the space size of the
candidate parameter sets and so, to reduce the processing time
required by parameter estimation. The error function J is given
by :

J (x) = 1
2 (H (x)− y)

t
R−1 (H (x)− y)

+ 1
2 (x− xb)

t
B−1 (x− xb)

(1)

Let us denote xb the background parameter set associated to
its error represented by a covariance matrix B. The actual
measurements on the system are denoted y and refer to
the manufactured machine signatures. The error matrix R is
associated to these observations. The operator giving values
comparable to y by the knowledge of x is called the observa-
tion operator, denoted H , and the simulated observations are
then defined by H (x).

Some enlightnening comments concerning (1) can be made.
When we make strong assumptions on model and measure-
ments, we notice that these cases are covered by the behavior of
the function J . Thus, assuming that the background parameter
set is completely wrong, the covariance matrix B tends to
∞ in quadratic form sense (i.e. B−1 is 0). The minimum
of the function J corresponds directly to information given
only by the obervations in order to get ideally y ≈ H (xa).
On the opposite side, the assumption that observations are
useless implies that R tends to ∞. We can then deduce that
J reaches the minimum when xa = xb. This case shows that
the second term of (1) keeps the current parameter set close to
the background one.

Several approaches [3] exist to minimize the function J , a
classical one called 3D-VAR is based on least square method,
weighted with respect to the errors, and the background is
added in order to regularize the minimization problem.

III. APPLICATION

In order to highlight the contribution of the presented
method, we apply the methodology to determine the initial
weak eccentricities of a healty real synchronous machine. Its
model has been used in previous works to determine signatures
of either static or dynamic eccentricity defects [2].

A. Numerical model

The studied test machine is a 3 phases, 4 poles and 50 Hz
salient synchronous generator with a constant air gap of 1.6
mm. Two radial flux probes, 90-degree shifted, are located in
the air gap in order to locally measure the radial magnetic
flux density. As then studied electromagnetic phenomenon is



invariant along the rotation axis z, a 2D extruded model repre-
senting a machine cross-section is used with a special care in
the elaboration of the mesh (22638 nodes, see Fig.1) in order to
avoid numerical oscillations. To detect a given eccentricity, the
harmonic contents of the emf given by both probes are analysed
as described in [2]. The machine simulation is carried out using
the A-phi formulation. The accurate parameter identification is
difficult since the use of numerical modelling induces a high
computation time.

In the case of the studied application, x describes the
offset of the rotor rotation axis in the cartesian coor-
dinates. We then choose the parameter set as x =[
dxsta dysta dxdyn dydyn

]
, where sta is referring to

static eccentricities and dyn to dynamic ones. These parame-
ters are the simulation inputs. The background parameter set
xb =

[
0 0 0 0

]
corresponds to the prior knowledge

about the healthy ideal machine.
The observations y and the operator H (x) contain the 8

low frequency harmonics refering to the two flux probe emfs
according to each rotor pole.

In general, R and B is very important in order to handle the
data assimilation process. In this paper, only simulated data are
considered. As there is no need to give an information beyond
both matrices, they are equal to identity. If a gaussian noise
is added to the observations y to represent the measurements,
then the use of these matrices might be necessary to reach good
results.

Furthermore, as the gradient of J is not known, it is
necessary to define the gradient step. It has to be low in
front of the eccentricity generation but high enough to avoid
the numerical noise induced by the FEM approximation. The
data assimilation methodology is computed using the platform
SALOME developed at Électricité De France [4].

Fig. 1. Mesh cross-section of a turbogenerator

B. Twin Experiments

In order to validate the data assimilation methodology, we
set up a twin experiment framework. It consists in chosing
a parameter set xt and to achieve simulations with this set
in order to have a true observation vector y = H (xt). The
proposed approach is then checked with different values of x

Fig. 2. Comparison between three simulation outputs associated to the three
data assimilation parameter sets

chosen within a narrow range representing weak eccentricities
(under 5% of the airgap).

Using the proposed method, 30 iterations have been carried
out to obtain the parameter set xa, with a computation time of
about 2 days in the present case. As an example, we use an
arbitrary parameter set xt as

[
−0.07 0.06 −0.05 0.04

]
mm, including positive and negative components and relative
to a non ideal machine.

Figure 2 shows the three harmonic contents computed from
the probe emfs and related to the observations y with the
parameter set xt, the optimal simulation paramater set xa

and the ideal machine xb. The result is given by xa =[
−0.07 0.0597 −0.0499 0.399

]
which is very close to

xt. The resulting paramater set and Figure 2 show that the
true observations is well approximated using data assimilation
optimal parameter set. Indeed, the difference between y and
H (xa) is around 6.2 ×10−3% compared to the background
simulation H (xb) (around 2.37%).

IV. CONCLUSION

In this paper, a methodology to identify the real parameter
set of a healthy electrical machine based on data assimilation
coupled with FEM has been presented. Twin experiments
validate the developped approach. In the extended version,
more details will be given on the methodology and other results
regarding to the experimental case will be shown.
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